Application Magnetochemistry

1. First Principles: What Does Magnetic Moment Tell Us?

The magnetic moment (μ) of a transition metal ion is a direct probe of its **electronic configuration**, specifically the number of **unpaired electrons** in its d-orbitals.

Magnetic Moment and Unpaired Electrons

The most critical concept is the **Magnetic Moment** (μ_{eff}), which is a measure of the strength of a magnetic species. It is directly related to the number of unpaired electrons (n) by the **spin-only** formula:

$$\mu_{eff} = \sqrt{n(n+2)}$$
 Bohr Magnetons (B.M.)

By measuring the magnetic moment experimentally (using a **Gouy Balance** or the **Evans Method**), you can determine the number of unpaired electrons and unlock a wealth of information.

2. Applications of Magnetic Moment Data

Application 1: Determination of Oxidation State

The oxidation state of a metal ion directly changes the number of d-electrons, which in turn changes the number of unpaired electrons and the magnetic moment.

Example: Cobalt (Co)

- $\mathbf{Co}^{2+}(\mathbf{d}^7)$: Can be high-spin or low-spin.
 - o In octahedral complexes, it's usually **high-spin** (e.g., [CoF₆]⁴⁻).
 - o Calculated μ _eff = $\sqrt{[3(3+2)]} = \sqrt{15} \approx 3.87$ B.M. (Experimental: $\sim 4.4 5.2$ B.M., the difference is due to orbital contribution).
 - o This confirms a d⁷ configuration with 3 unpaired electrons.
- $Co^{3+}(d^6)$:
 - o In low-spin complexes (e.g., $[Co(CN)_6]^{3-}$), all electrons are paired (n=0).
 - ο μ eff \approx **0 B.M.** (Diamagnetic).
 - In high-spin complexes (e.g., $[CoF_6]^{3-}$), it has 4 unpaired electrons (n=4).
 - \circ μ eff = $\sqrt{[4(4+2)]} = \sqrt{24} \approx 4.90$ B.M.

If you have an unknown cobalt complex, measuring its magnetic moment can immediately tell you if it's Co(III) or Co(III), and if it's high-spin or low-spin.

Application 2: Distinguishing Between High-Spin and Low-Spin Complexes

This is one of the most important applications, especially for d⁴, d⁵, d⁶, and d⁷ ions in octahedral geometry. The magnetic moment is a clear, experimental distinction.

Example: Iron (Fe)

• $\mathbf{Fe^{3+}}(d^5)$:

High-spin complex (e.g., [FeF₆]³⁻): Weak field ligand. All 5 electrons are unpaired (n=5).

Application Magnetochemistry

- μ eff = $\sqrt{[5(5+2)]} = \sqrt{35} \approx 5.92$ B.M. (Experimental is very close).
- o **Low-spin complex** (e.g., $[Fe(CN)_6]^{3-}$): Strong field ligand. Only 1 unpaired electron (n=1).
 - $\mu_{eff} = \sqrt{[1(1+2)]} = \sqrt{3} \approx 1.73$ B.M.

A measurement showing μ _eff ~ 6 B.M. vs. ~ 2 B.M. is a definitive test for the ligand field strength and the spin state of the complex.

Application 3: Identification of Geometries (Stereochemistry)

The crystal field splitting (Δ) is different for different geometries (e.g., Octahedral vs. Tetrahedral). This affects whether a complex is high-spin or low-spin.

Example: Nickel (Ni²⁺) - d⁸

- Octahedral Geometry (e.g., [Ni(H₂O)₆]²⁺): Almost always high-spin for Ni(II). Two unpaired electrons (n=2).
 - $\mu_{\text{eff}} = \sqrt{[2(2+2)]} = \sqrt{8} \approx 2.83 \text{ B.M.}$
- Square Planar Geometry (e.g., [Ni(CN)₄]²⁻): Strong field ligand forces all electrons to pair up (n=0).
 - ο μ eff \approx **0 B.M.** (Diamagnetic).
- **Tetrahedral Geometry** (e.g., [NiCl₄]²⁻): The splitting is small, so it's always high-spin with two unpaired electrons (n=2).
 - \circ μ _eff \approx **2.83 B.M.** (Note: It can be tricky to distinguish from octahedral based on magnetism alone, but it helps when combined with other data).

Thus, for a Ni(II) complex, a magnetic moment of ~0 B.M. is a clear signature of a square planar structure.

Application 4: Evidence for Metal-Metal Bonding and Cluster Compounds

In some compounds, metal atoms can pair their electrons to form metal-metal bonds, reducing the number of unpaired electrons.

Example: Chromium Acetate Hydrate [Cr₂(O₂CCH₃)₄(H₂O)₂]

- A single Cr^{2+} (d⁴) ion would be expected to have a high magnetic moment (n=4, μ _eff ~4.9 B.M.).
- However, the measured μ _eff for this dimer is very low.
- Interpretation: This indicates that the two Cr atoms are bonded together (a quadruple bond), pairing up their electrons and resulting in a diamagnetic or very weakly paramagnetic compound.

Application 5: Diagnosing Quenching of Orbital Contribution

The spin-only formula is an approximation. For certain ions, there is a significant orbital contribution to the magnetic moment.

Application Magnetochemistry

- **Ions with orbital quenching:** High-spin d⁵ (Mn²⁺, Fe³⁺) and A or E ground terms (e.g., Ti³⁺). Their experimental μ eff is very close to the spin-only value.
- Ions with significant orbital contribution: Co^{2+} (d^7) and Ni^{2+} (d^8). Their experimental μ _eff is often higher than the spin-only value.
 - For Co²⁺, spin-only for n=3 is 3.87 B.M., but experimental values are often 4.7 5.2 B.M.

Analyzing this deviation helps chemists understand the detailed electronic ground state of the metal ion.

Summary Table for Quick Reference

Ion	d- electrons	Common Oxidation State	High-Spin (μ_eff in B.M.)	Low-Spin (µ_eff in B.M.)	Application
Ti ³⁺	d^1	+3	~1.73 (n=1)	-	Oxidation State
V ³⁺	d^2	+3	~2.83 (n=2)	-	Oxidation State
Cr³+	d^3	+3	~3.87 (n=3)	-	Geometry, OS
Mn ²⁺	d ⁵	+2	~5.92 (n=5)	~1.73 (n=1)	Spin State
Fe ²⁺	d ⁶	+2	~4.90 (n=4)	~0 (n=0)	Spin State
Fe ³⁺	d ⁵	+3	~5.92 (n=5)	~2.83 (n=1)*	Spin State
Co ²⁺	\mathbf{d}^7	+2	~4.7-5.2 (n=3)	~1.73 (n=1)	OS & Spin State
Ni ²⁺	d ⁸	+2	~2.83 (n=2)	~0 (n=0)	Geometry
Cu ²⁺	d ⁹	+2	~1.73 (n=1)	-	Oxidation State

Note: Low-spin d⁵ has one unpaired electron.

For you, magnetic moment data is a powerful, low-cost, and relatively simple **diagnostic tool**. In the laboratory or while characterizing a new compound, it helps you answer fundamental questions:

- 1. What is the metal's oxidation state?
- 2. Are the ligands creating a strong or weak field? (High-spin vs. Low-spin)
- 3. What is the probable geometry around the metal centre? (Tetrahedral, Square Planar, Octahedral)
- 4. Is there something unusual, like metal-metal bonding?

By integrating magnetic susceptibility measurements with other techniques like UV-Vis spectroscopy and IR spectroscopy, you can build a comprehensive picture of the structure and bonding in transition metal complexes, which is at the very heart of inorganic chemistry.